
Secure Software Updates for IoT Devices
By Alan Grau, Icon Labs

alan.grau@iconlabs.com www.iconlabs.com

Secure software updates are a critical capability for the success and growth of the IoT. The

model of installing embedded devices into the field that are static and never updated is not

sustainable. IoT devices must support robust, secure, and scalable software and firmware update

mechanisms.

Challenges for IoT Devices

Existing software update mechanisms cannot simply be re-used to solve the challenges of

software updates for the IoT. Each of the existing solutions targets a specific class of device

(Operating System and hardware) with a defined use (general purpose computer, cell phone,

etc.). The IoT consists of a wide range of device types and an ever wider range of uses cases. A

software update solution for desktop PCs won’t meet the requirements of updating a wearable-

IoT device, and the solution used for updating cell phone software won’t meet the requirements

of the connect car. A secure software update standard for IoT devices will need to address the

range of hardware, operating systems, connectivity capabilities, and operational use cases of a

very broad set of devices.

Secure software updates

A scalable, secure software update standard must define mechanisms (technology) and policies

to address the following issues:

 Software signing and validation (including the role of certificates, keys or other

authentication mechanisms)

 Transport protocols used for distribution of the software

 Encryption of the software while being distributed, if encryption is used

 Scheduling and distribution of the software updates. For example, a staged rollout of

software updates may be desirable so that any issues discovered in the field that escaped

lab testing can be found and reported before the majority of the devices are updated.

 Who has control over software updates? For many devices, the user should be allowed

some discretion over when updates occur so as not to interrupt their use of the device, or

the device needs to be aware of how the update will impact its operation (we don’t want

cars updating their software while driving down the highway). This needs to be balanced

with the need to ensure that updates occur.

 Distribution via an IoT gateway. For IoT devices that connect via a gateway, the role of

the gateway in caching and distributing software updates needs to be defined.

mailto:alan.grau@iconlabs.com

 Authentication of the software update server by the IoT device

 Immutable Device Identity

 Secure storage/anti-tamper storage

Some issues have both a policy and a technology component. For example, a policy could

specify if the software update package is encrypted for distribution. The encryption algorithm

and key distribution mechanisms are technology components that would also have to be defined.

Scalable solutions for IoT devices

Given the limited resources of many IoT devices, a secure software update standard will have to

provide sufficient flexibility to scale from small MCU based systems, to larger devices with

significant resources. One option is to define tiered security profiles with increasing security

requirements. These profiles would define things such as the encryption, signing and hash

algorithms used for that profile, how certificates are managed and used for each profile, etc.

This allows engineers to understand the trade-offs they are making in terms security. They will

understand, and be able to communicate to downstream stakeholders the security trade-offs they

have made, based upon the profile they have implemented.

Use of tiered security protocols allows the creation of a standard that addresses very low end

devices with minimal resources along with more capable devices with greater computing power.

This model allows practical trade-offs between ideal security and what can realistically be

implemented in an IoT device, including:

 Use X.509 certificates and RSA signatures

 Support decryption of the software update package

 Support updates of the full software image

 Support decompression of compressed software images

The table below provides a sample of some of the considerations that will need to be addressed

when creating security profiles for secure firmware updates. This is intended only to illustrate a

framework that can be used as a starting point. Additional effort will be required to define the

details, clarify the requirements, and ensure that the appropriate profiles are specified.

Tier Device profile Secure update capabilities Security trade-offs

Tier 1 MCU class device, limited

resources running a very

small RTOS or no RTOS

Support transfer of

encrypted images with a

fixed encryption key and

hashing of the image for

integrity

Requires a shared secret key

and only provides weak

validation of the image. If

the key is leaked there is no

way to securely reprogram

devices with a new key.

Tier 2 MPU class device running

a full featured RTOS but

without HW security

Add support for RSA signed

images using X.509

certificates.

Much stronger as a strong

validation of the image can

be performed.

acceleration

Tier 3 MPU class device with a

security co-processor or

HW crypto acceleration.

Add support for certificates

stored in a HW TPM or

secure HOW storage.

Adds a layer of HW security

to the overall solution.

Software update scheduling algorithm

Detailed consideration of implementation issues will be critical for ensuring that any standard

developed is widely adopted. The algorithm for distributing software updates is one such

consideration.

A staged scheduling algorithm for distributing software updates mitigates against widespread

distribution of an update with a software bug that is discovered in the field that was not

discovered during lab testing. For systems with very large numbers of devices, or in which the

update process is expensive in terms of processing resources, bandwidth or impact upon device

usage. A sample staged rollout schedule is provided in the table below.

Day Percentage of devices updated Number of devices updated

(assumes 1million total devices)

Day 1 .1% 1,000

Day 2 1% 10,000

Day 3 10% 100,000

Day 4 20% 200,000

Day 5 20% 200,000

Day 6 20% 200,000

Day 7 20% 200,000

Day 8 Remaining devices 89,000

Other considerations when creating a rollout schedule include impact on network bandwidth, if

the update includes critical security features, and any device specific requirements for

maintaining consistency of versions.

The standard should not attempt to define the staged rollout schedule or algorithm, but should

include provisions for allowing end users to define a schedule that takes into consideration their

needs.

Summary

Secure software updates are a critical feature for IoT device adoption. Ad-hoc solutions won’t

scale or solve the interoperability requirements of the IoT. The historic approach of never

upgrading devices in the field is not sustainable. Creating a standard that is sufficiently scalable

and flexible to meet the needs of IoT devices will require careful consideration of a broad set of

use cases, device types, and implementation issues. While not an easy task, creating a standard

for secure software updates for IoT devices will help accelerate the adoption of the IoT and solve

a critical secure requirement for the IoT.

